
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
siDirect 2.0: updated software for designing functional siRNA with 
reduced seed-dependent off-target effect
Yuki Naito*1, Jun Yoshimura2, Shinichi Morishita2 and Kumiko Ui-Tei*1

Address: 1Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-
0033, Japan and 2Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 
Chiba 277-8562, Japan

Email: Yuki Naito* - y-naito@RNAi.jp; Jun Yoshimura - yoshimura@cb.k.u-tokyo.ac.jp; Shinichi Morishita - moris@cb.k.u-tokyo.ac.jp; 
Kumiko Ui-Tei* - ktei@bi.s.u-tokyo.ac.jp

* Corresponding authors    

Abstract
Background: RNA interference (RNAi), mediated by 21-nucleotide (nt)-length small interfering
RNAs (siRNAs), is a powerful tool not only for studying gene function but also for therapeutic
applications. RNAi, requiring perfect complementarity between the siRNA guide strand and the
target mRNA, was believed to be extremely specific. However, a recent growing body of evidence
has suggested that siRNA could down-regulate unintended genes whose transcripts possess
complementarity to the 7-nt siRNA seed region. This off-target gene silencing may often provide
incongruous results obtained from knockdown experiments, leading to misinterpretation. Thus, an
efficient algorithm for designing functional siRNAs with minimal off-target effect based on the
mechanistic features is considered of value.

Results: We present siDirect 2.0, an update of our web-based software siDirect, which provides
functional and off-target minimized siRNA design for mammalian RNAi. The previous version of
our software designed functional siRNAs by considering the relationship between siRNA sequence
and RNAi activity, and provided them along with the enumeration of potential off-target gene
candidates by using a fast and sensitive homology search algorithm. In the new version, the siRNA
design algorithm is extensively updated to eliminate off-target effects by reflecting our recent
finding that the capability of siRNA to induce off-target effect is highly correlated to the
thermodynamic stability, or the melting temperature (Tm), of the seed-target duplex, which is
formed between the nucleotides positioned at 2-8 from the 5' end of the siRNA guide strand and
its target mRNA. Selection of siRNAs with lower seed-target duplex stabilities (benchmark Tm <
21.5°C) followed by the elimination of unrelated transcripts with nearly perfect match should
minimize the off-target effects.

Conclusion: siDirect 2.0 provides functional, target-specific siRNA design with the updated
algorithm which significantly reduces off-target silencing. When the candidate functional siRNAs
could form seed-target duplexes with Tm values below 21.5°C, and their 19-nt regions spanning
positions 2-20 of both strands have at least two mismatches to any other non-targeted transcripts,
siDirect 2.0 can design at least one qualified siRNA for >94% of human mRNA sequences in RefSeq.
siDirect 2.0 is available at http://siDirect2.RNAi.jp/.
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Background
RNA interference (RNAi) mediated by double-stranded
RNA has become a powerful tool not only for studying
gene functions, but also for therapeutic applications [1,2].
In mammalian cells, RNAi is induced by small interfering
RNA (siRNA), a duplex of 21-nucleotide (nt) RNAs con-
taining 2-nt 3' overhangs. The siRNAs incorporated into
cells are transferred to the RNAi effector complex called
RNA-induced silencing complex (RISC) [3,4]. RISC
assembles on one of the two strands of siRNA duplex, and
is activated upon the removal of the passenger strand [5-
9]. The activated RISC is a ribonucleoprotein complex
minimally consisting of the core protein Argonaute (Ago)
and single-stranded siRNA, which acts as the guide to tar-
get complementary sequences within mRNAs [10-13].
The 5' end of the siRNA guide strand is anchored in the
binding pocket of the Mid domain of Archaeoglobus fulg-
idus Ago-like protein [14,15], and the 3' end is anchored
to the PAZ domain of human [16] and Drosophila [17] Ago
in the RISC complex. Thus, in the siRNA guide strand, 19
nucleotides positioned at 2-20 from 5' end may be
responsible for target RNA recognition, leading to the
silencing of gene expression by cleaving target mRNA [10-
13]. Since RNAi is based on sequence recognition by the
siRNA, it can give rise to the silencing of other genes with
similar sequences. This phenomenon is referred to as an
off-target effect, and the growing evidence from large-scale
knockdown experiments indicates that the off-target
silencing is induced by the base-pairing between the seed
region at positions 2-8 from the 5' end of the RISC-loaded
siRNA strand, and its complementary sequences in the 3'
UTR of the unrelated mRNAs [18-23]. Although RNAi is
now widely and routinely used as an experimental tool,
the remaining fundamental concern is whether the target
gene can be specifically silenced. Especially, accurate
knowledge of RNAi specificity is critical for therapeutic
technologies.

To avoid off-target effects, one approach may be to select
the siRNA whose seed sequence is not complementary to
any sequences in the 3' UTR of all non-targeted genes.
However, this approach is problematic because random
7-nt sequence is predicted to appear in every 16,384 bp on
average. In fact, we analyzed the human 3' UTR database
and it proved impossible to select such siRNAs. That is,
human siRNAs with the most infrequent 7-nt seed
sequence still have seed-complementarities with 17 3'
UTR sequences. Recently, we have revealed that the capa-
bility of siRNAs to induce seed-dependent off-target effect
is highly correlated to the thermodynamic stability of the
duplex formed between the seed region of siRNA guide
strand and its target mRNA [23]: the melting temperature
(Tm) of the seed-target duplex showed strong positive cor-
relation with the induction of seed-dependent off-target
effects. The results suggested that the Tm of 21.5°C may

serve as the benchmark, which discriminates the almost
off-target-free seed sequences from the off-target-positive
ones. Thus, selecting the siRNAs with low Tm of the seed-
target duplex should minimize seed-dependent off-target
silencing.

We have previously released highly effective, target-spe-
cific siRNA design software, siDirect [24], in which siRNA
sequences were selected using our guidelines established
through extensive experiments to clarify the relationship
between siRNA sequences and RNAi activities [7]. In order
to exclude potential cross-hybridization candidates, siDi-
rect used the rigorous homology search algorithm to
select siRNA sequences that have at least three mismatches
to any other non-targeted transcripts [25]. In the updated
software, siDirect 2.0, the siRNA design algorithm has
been extensively updated to select off-target minimized
siRNAs by considering the thermodynamic stability of the
seed-target duplex. By using the default parameters, at
least one functional siRNA could be designed for >94% of
the human mRNA sequences in RefSeq release 30.

Implementation
Overall flow of siRNA selection in siDirect 2.0 is illus-
trated in Figure 1. All possible 23-mer subsequences, cor-
responding to the complementary sequence of 21-nt
guide strand and 2-nt 3' overhang of the passenger strand
within the target sequence, are generated and filtered in
three selection steps described below.

Selection of highly functional siRNAs
In the first step, highly functional siRNA sequences were
selected using our algorithm [7] (Figure 1, Step 1). We
have revealed that efficient RNAi could be induced by the
siRNAs that satisfies the following three sequence condi-
tions simultaneously: A/U at the 5' terminus of the guide
strand; G/C at the 5' terminus of the passenger strand; at
least 4 A/U residues in the 5' terminal 7 bp of the guide
strand. In addition, G/C stretch longer than 9 bp should
be absent [7]. The experimental validation showed that
98% of the siRNAs predicted to be functional have
reduced the target gene expression [26]. The proportion of
functional siRNA sequences selected by this algorithm is
14.7% of all human 23-mer sequences generated from
RefSeq 30 (Figure 1A, see Step 1).

Reduction of seed-dependent off-target effects
We have found that the off-target effect is highly corre-
lated with the thermodynamic stability or Tm of the seed-
target duplex, which is formed between the nucleotides
positioned at 2-8 from the 5' end of the siRNA guide
strand and its target sequence [23]. In the second step, to
avoid off-target effect, Tm for the seed-target duplex was
calculated using the nearest neighbor model and the ther-
modynamic parameters for the formation of RNA duplex
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as described previously [23] (Figure 1, Step 2). The for-
mula for calculating Tm is: Tm = {(1000 × ΔH)/(A + ΔS +
R ln(CT/4))} - 273.15 + 16.6 log [Na+], where ΔH (kcal/
mol) is the sum of the nearest neighbor enthalpy change,
A is the helix initiation constant (-10.8), ΔS is the sum of
the nearest neighbor entropy change [27], R is the gas con-
stant (1.987 cal/deg/mol), and CT is the total molecular
concentration of the strand (100 μM). [Na+] was fixed at
100 mM. As shown in our previous report, calculated Tm
of 21.5°C may be a benchmark to discriminate almost
off-target-free seed sequences from the off-target-positive
ones [23], and thus used as the initial standard in this
study. Furthermore, it has been revealed that RNAi silenc-
ing is occasionally induced by the passenger strands of
functional siRNAs [23], and that the passenger strands
also take part in the seed-dependent off-target gene silenc-
ing [18,28]. Thus, siRNAs whose seed-target Tm is below
21.5°C for both guide and passenger strands were selected
in this study. In consequence, 3.0% of all human 23-mer
sequences remained available (Figure 1A, see Step 2). Cal-

culated Tm value for each siRNA is shown in the siDirect
2.0 output page (Figure 2A).

Elimination of near-perfect matched genes
Several studies have indicated that the effect of single-base
mismatches between the siRNA guide strand and the tar-
get mRNA varies, according to the positions of the mis-
match and/or the sequence of siRNA [21,29]. However, as
shown in our previous report, it is obvious that even when
the Tm value of the seed-target duplex is sufficiently low,
the target gene silencing can still take place if the non-seed
region is completely complementary [23]. Therefore, in
the third step, siRNAs that have near-perfect matches to
any other non-targeted transcripts were eliminated. In
siDirect 2.0, off-target searches are performed for 19-mer
sequences at positions 2-20 of both strands of the siRNA
duplex (Figure 1B, Step 3), because these 19 nucleotides
are thought to be involved in target mRNA recognition.
Since widely-used BLAST tends to overlook near-perfect
match candidates frequently, we used our fast and sensi-

Overall flow of siRNA selection in siDirect 2.0Figure 1
Overall flow of siRNA selection in siDirect 2.0. The functional and target-specific siRNAs were selected by three selec-
tion steps. In Step 1, functional siRNA sequences were selected according to our algorithm [7]. In Step 2, siRNAs with Tm val-
ues below 21.5°C in the seed-target duplex were selected. In Step 3, nucleotides positioned in the 2-20 of both strands of the 
siRNAs were subjected to the near-perfect match searches, and siRNAs that have at least two mismatches to any other non-
targeted transcripts were selected. The percentages denote the proportions of selected ('Yes') or unselected ('No') siRNA 
candidates calculated using all 23-mer subsequences (56,375,087; 100%) generated from human mRNAs in RefSeq release 30.
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tive algorithm [25]. In addition, all of the near-perfect
match hits are precomputed for all the functional human
siRNAs to accelerate the computational performance.
Precomputed results are stored in the memory engine of
MySQL relational database management system. This
makes it possible to return the list of siRNA candidates
within a few seconds (Figure 2A). The output page
includes the minimum number of mismatches against
any near-perfect match candidates for each siRNA (Figure
2A). By clicking the individual siRNA in Figure 2A, a
detailed list of candidate genes will appear (Figure 2B). By
default, siRNA sequences that have at least two mis-
matches to any other non-targeted transcripts are selected.

Results and Discussion
We performed a genome-wide design of siRNAs for
human mRNAs in RefSeq release 30 with the following
parameters: 1) satisfying our functional siRNA design
algorithm [7,24], 2) Tm values at the seed-target duplex of
both the guide and the passenger strands below 21.5°C,
and 3) no off-target hits with less than two mismatches.

The degree of off-target effects is shown to be correlated
with the thermodynamic stability or the calculated Tm
value of the seed-target duplex [23]. The initial boundary
Tm value was set to 21.5°C to discriminate the off-target-
free sequences from the off-target-positive ones, according

Screenshots from siDirect 2.0 webserverFigure 2
Screenshots from siDirect 2.0 webserver. (A) A typical output of siDirect 2.0: siRNAs targeting human interferon β-1 
(NM_002176) are designed. (B) By clicking the individual siRNA in (A), a detailed list of off-target gene candidates with near-
perfect matches is displayed separately for each siRNA strand. The alignment between each off-target sequence and the siRNA 
sequence clearly visualizes the positions of mismatches.

A B Similar Sequences

19 + GCTTGGATTCCTACAAAGA
|||||||||||||||||||
GCTTGGATTCCTACAAAGA

exon(2)

M28622 | Hs#S1166 Human interferon beta-1 (IFN-beta-1) mRNA, complete cds.

NM_002176.2 | Homo sapiens interferon, beta 1, fibroblast (IFNB1), mRNA

17 + GCTTGGATTCCTACAAAGA
X|||||||||X||||||||
ACTTGGATTCATACAAAGA

unaligned-notalign(1)

BX648613 | Hs#S16818038 Homo sapiens mRNA; cDNA DKFZp686N06224 (from clone DKFZp686N06224)

16 + GCTTGGATTCCTACAAAGA
XX|||X|||||||||||||
CTTTGCATTCCTACAAAGA

exon(2)

M30640 | Hs#S2104 Human endothelial leukocyte adhesion molecule I (ELAM1) mRNA, complete cds.

NM_000450.1 | Homo sapiens selectin E (endothelial adhesion molecule 1) (SELE), mRNA

16 + GCTTGGATTCCTACAAAGA
X||X|X|||||||||||||
ACTGGAATTCCTACAAAGA

exon(2)

BX648671 | Hs#S16817980 Homo sapiens mRNA; cDNA DKFZp686B0247 (from clone DKFZp686B0247) 

NM_182523.1 | Homo sapiens hypothetical protein MGC61571 (MGC61571), mRNA

16 + GCTTGGATTCCTACAAAGA
X||||X|||||||X|||||
tcttgcattcctataaaga

exon(1)

AY010114 | Hs#S3438475 Homo sapiens unknown mRNA sequence

16 + GCTTGGATTCCTACAAAGA
X|||||X||||X|||||||
TCTTGGGTTCCAACAAAGA

exon(1)

NM_001001786.1 | Homo sapiens BRCC2 mRNA (BRCC2), mRNA

16 + GCTTGGATTCCTACAAAGA
X||||||||X|||X|||||
tcttggattgctataaaga

exon(1)

NM_024638.2 | Homo sapiens queuine tRNA-ribosyltransferase domain containing 1 (QTRTD1), mRNA

16 + GCTTGGATTCCTACAAAGA
X||||||||||X||||X||
ACTTGGATTCCAACAAGGA

exon(7)

AL833606 | Hs#S4621785 Homo sapiens mRNA; cDNA DKFZp686L2267 (from clone DKFZp686L2267) 

NM_003872.2 | Homo sapiens neuropilin 2 (NRP2), transcript variant 2, mRNA

NM_018534.3 | Homo sapiens neuropilin 2 (NRP2), transcript variant 4, mRNA

NM_201264.1 | Homo sapiens neuropilin 2 (NRP2), transcript variant 6, mRNA

NM_201266.1 | Homo sapiens neuropilin 2 (NRP2), transcript variant 1, mRNA

NM_201267.1 | Homo sapiens neuropilin 2 (NRP2), transcript variant 5, mRNA

NM_201279.1 | Homo sapiens neuropilin 2 (NRP2), transcript variant 3, mRNA

16 + GCTTGGATTCCTACAAAGA
|X|||XX||||||||||||
GTTTGCTTTCCTACAAAGA

exon-exon junction(1)

XM_035572.9 | PREDICTED: Homo sapiens chromosome 4 open reading frame 9 (C4orf9), mRNA

16 + GCTTGGATTCCTACAAAGA
|X|||||X|||||||||X|
GATTGGACTCCTACAAATA

exon(1)

BF895230 | Hs#S3158510 CM2-MT0158-301100-572-e12 MT0158 Homo sapiens cDNA, mRNA sequence

16 + GCTTGGATTCCTACAAAGA
|X|||||X|||||||||X|
GATTGGACTCCTACAAATA

exon(1)

XM_373814.2 | PREDICTED: Homo sapiens hypothetical LOC388572 (LOC388572), mRNA

16 + GCTTGGATTCCTACAAAGA
|X|||||X|||||||||X|
GATTGGACTCCTACAAATA

exon(1)

AK125099 | Hs#S16887605 Homo sapiens cDNA FLJ43109 fis, clone CTONG2025516, moderately similar to

Homo sapiens general transcription factor II, i (GTF2I)

16 + GCTTGGATTCCTACAAAGA
|X|||||X|||||||||X|
GATTGGACTCCTACAAATA

exon(1)

AL135733 | Hs#S1712524 DKFZp434H0831_r1 434 (synonym: htes3) Homo sapiens cDNA clone

DKFZp434H0831 5', mRNA sequence

16 + GCTTGGATTCCTACAAAGA
|X|||||||||||XX||||
GTTTGGATTCCTATGAAGA

exon(2)

AB094093 | Hs#S15632068 Homo sapiens DLNB14 mRNA, complete cds

NM_198489.1 | Homo sapiens similar to DLNB14 (DLNB14), mRNA

16 + GCTTGGATTCCTACAAAGA
||XXX||||||||||||||
GCGCCGATTCCTACAAAGA

exon(2)

AF091263 | Hs#S1368572 Homo sapiens RNA binding motif protein 5 (RBM5) mRNA, complete cds

NM_005778.1 | Homo sapiens RNA binding motif protein 5 (RBM5), mRNA

16 + GCTTGGATTCCTACAAAGA
||XX|||X|||||||||||
GCGAGGACTCCTACAAAGA

exon(2)

BC023552 | Hs#S5517855 Homo sapiens stratifin, mRNA (cDNA clone MGC:19713 IMAGE:3534328),

complete cds

NM_006142.3 | Homo sapiens stratifin (SFN), mRNA

16 + GCTTGGATTCCTACAAAGA
|||X|X|||||||||||X|
gctagaattccTACaaaaa

unaligned-notalign(1)

BM665772 | Hs#S4081636 UI-E-CK1-afn-h-18-0-UI.s1 UI-E-CK1 Homo sapiens cDNA clone UI-E-CK1-

afn-h-18-0-UI 3', mRNA sequence

16 + GCTTGGATTCCTACAAAGA
|||||X||||||X|||X||
gcttgaattccttcaagga

exon(1)

CR749825 | Hs#S21591852 Homo sapiens mRNA; cDNA DKFZp686E19106 (from clone DKFZp686E19106)

16 + GCTTGGATTCCTACAAAGA
|||||||XX||X|||||||
GCTTGGAGGCCAACAAAGA

exon(1)

NM_003803.2 | Homo sapiens myomesin 1 (skelemin) 185kDa (MYOM1), mRNA

16 + GCTTGGATTCCTACAAAGA
|||||||XX||X|||||||
GCTTGGAGACCCACAAAGA

exon(1)

NM_002196.2 | Homo sapiens insulinoma-associated 1 (INSM1), mRNA

16 + GCTTGGATTCCTACAAAGA
|||||||X|X|||||X|||
GCTTGGACTTCTACAGAGA

exon(2)

BX647741 | Hs#S16819013 Homo sapiens mRNA; cDNA DKFZp686C0786 (from clone DKFZp686C0786) 

NM_198283.1 | Homo sapiens EGF-like-domain, multiple 11 (EGFL11), mRNA

16 + GCTTGGATTCCTACAAAGA
|||||||||X||X|||X||
GCTTGGATTACTTCAAGGA

exon(2)

BC007372 | Hs#S3603344 Homo sapiens tripartite motif-containing 52, mRNA (cDNA clone MGC:16175

IMAGE:3636274), complete cds

NM_032765.2 | Homo sapiens tripartite motif-containing 52 (TRIM52), mRNA

16 + GCTTGGATTCCTACAAAGA
|||||||||X||||X||X|
GCTTGGATTTCTACCAATA

exon(1)

BC039511 | Hs#S6158647 Homo sapiens, clone IMAGE:5579213, mRNA

16 + GCTTGGATTCCTACAAAGA
|||||||||X|||||XX||
GCTTGGATTGCTACATGGA

exon(2)

AK023166 | Hs#S2651220 Homo sapiens cDNA FLJ13104 fis, clone NT2RP3002343

NM_012461.1 | Homo sapiens TERF1 (TRF1)-interacting nuclear factor 2 (TINF2), mRNA
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68-90 TTGTCAACATGACCAACAAGTGT
ACUUGUUGGUCAUGUUGACAA

GUCAACAUGACCAACAAGUGU
U 16.7 °C 20.5 °C 2 [detail] 3 [detail]

131-153 CTCTTTCCATGAGCTACAACTTG
AGUUGUAGCUCAUGGAAAGAG

CUUUCCAUGAGCUACAACUUG
U 19.0 °C 20.1 °C 3 [detail] 2 [detail]

152-174 TGCTTGGATTCCTACAAAGAAGC
UUCUUUGUAGGAAUCCAAGCA

CUUGGAUUCCUACAAAGAAGC
U 19.2 °C 20.1 °C 2 [detail] 3 [detail]

302-324 CCGCATTGACCATCTATGAGATG
UCUCAUAGAUGGUCAAUGCGG

GCAUUGACCAUCUAUGAGAUG
U 17.8 °C 20.5 °C 4 [detail] 3 [detail]

326-348 TCCAGAACATCTTTGCTATTTTC
AAAUAGCAAAGAUGUUCUGGA

CAGAACAUCUUUGCUAUUUUC
U 19.7 °C 19.2 °C 2 [detail] 2 [detail]

331-353 AACATCTTTGCTATTTTCAGACA
UCUGAAAAUAGCAAAGAUGUU

CAUCUUUGCUAUUUUCAGACA
U 12.2 °C 12.0 °C 2 [detail] 2 [detail]

338-360 TTGCTATTTTCAGACAAGATTCA
AAUCUUGUCUGAAAAUAGCAA
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U 19.2 °C -4.3 °C 3 [detail] 2 [detail]

372-394 CTGGAATGAGACTATTGTTGAGA
UCAACAAUAGUCUCAUUCCAG

GGAAUGAGACUAUUGUUGAGA
U 12.1 °C 20.4 °C 2 [detail] 3 [detail]
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AUGGUUUAUCUGAUGAUAGAC
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U 20.0 °C 17.4 °C 3 [detail] 3 [detail]

581-603 TGGAAATCCTAAGGAACTTTTAC
AAAAGUUCCUUAGGAUUUCCA

GAAAUCCUAAGGAACUUUUAC
U 13.3 °C 18.7 °C 2 [detail] 2 [detail]

587-609 TCCTAAGGAACTTTTACTTCATT
UGAAGUAAAAGUUCCUUAGGA

CUAAGGAACUUUUACUUCAUU
U 14.6 °C 19.9 °C 2 [detail] 2 [detail]

591-613 AAGGAACTTTTACTTCATTAACA
UUAAUGAAGUAAAAGUUCCUU

GGAACUUUUACUUCAUUAACA
U 8.9 °C 13.3 °C 2 [detail] 2 [detail]

595-617 AACTTTTACTTCATTAACAGACT
UCUGUUAAUGAAGUAAAAGUU

CUUUUACUUCAUUAACAGACU
U 11.8 °C 4.9 °C 2 [detail] 3 [detail]

601-623 TACTTCATTAACAGACTTACAGG
UGUAAGUCUGUUAAUGAAGUA

CUUCAUUAACAGACUUACAGG
U 21.4 °C 8.9 °C 3 [detail] 2 [detail]

720-742 TGGCTAATGTACTGCATATGAAA
UCAUAUGCAGUACAUUAGCCA

GCUAAUGUACUGCAUAUGAAA
U 21.1 °C 11.6 °C 3 [detail] 2 [detail]

721-743 GGCTAATGTACTGCATATGAAAG
UUCAUAUGCAGUACAUUAGCC

CUAAUGUACUGCAUAUGAAAG
U 14.9 °C 8.5 °C 3 [detail] 2 [detail]

744-766 GACACTAGAAGATTTTGAAATTT
AUUUCAAAAUCUUCUAGUGUC

CACUAGAAGAUUUUGAAAUUU
U 7.7 °C 18.9 °C 2 [detail] 2 [detail]

746-768 CACTAGAAGATTTTGAAATTTTT
AAAUUUCAAAAUCUUCUAGUG

CUAGAAGAUUUUGAAAUUUUU
U 7.4 °C 20.2 °C 2 [detail] 2 [detail]

749-771 TAGAAGATTTTGAAATTTTTATT
UAAAAAUUUCAAAAUCUUCUA

GAAGAUUUUGAAAUUUUUAUU
U -12.0 °C 5.3 °C 2 [detail] 2 [detail]
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to our previous report [23]. Among the entire siRNA
sequence population that have at least two mismatches to
any other non-targeted transcripts, the siRNA sequences
with seed-target Tm below 21.5°C account for 2.1% of
about 56 million 23-mer fragments found in human
mRNAs (Figure 3A), and one or more siRNA can be
designed for 94.7% of all human mRNAs (Figure 3B).
However, the strong correlation between the calculated
Tm and the off-target gene silencing activity indicates that
the seed-dependent off-target effect is definitively reduced
when the siRNA with lower Tm of seed-target duplex are
selected. The population of siRNAs among all human 23-
mer sequences with the Tm in the seed-target duplex of
less than 15°C and 10°C is 0.7% and 0.3%, respectively
(Figure 2A), and the fraction of human mRNAs which can
be targeted by more than one siRNA within such criteria
decreases to 85.1% and 72.7%, respectively. (Figure 3B).

It is also desirable to select siRNA that contains as many
mismatches as possible to any non-targeted mRNAs. In
addition to the Tm value of below 21.5°C, siRNA
sequences with at least two mismatches to any other non-
targeted transcripts are selectable for 94.7% of human
mRNAs (Figure 3B). However, if the siRNAs having near-
perfect match hits with less than three mismatches, with
their Tm of seed sequences below 21.5°C, are selected,
one or more siRNA can be designed for only 77.2% of the
human mRNAs (Figure 3B). When siRNAs with seed Tm
below 15°C and 10°C were selected, siRNAs can be

designed for only 47.0% and 18.5%, respectively (Figure
3B). Furthermore, the percentage of human mRNAs drops
severely to 0.15% if the near-perfect match hits with less
than four mismatches are filtered. Thus, siDirect 2.0 filters
siRNAs with less than two mismatches by default to avoid
severe reduction in the number of siRNA candidates.

We were unable to design functional, off-target mini-
mized siRNAs for 5.3% of the RefSeq mRNAs using the
default parameters. Typical examples of these mRNAs are
the histone clusters (NM_003523, etc.) and ribosomal
proteins (NM_002952, etc.), which are known to form
multigene families. When designing siRNAs targeting
such genes, users can manually investigate the detailed list
of off-target gene candidates (Figure 2B) and select the
siRNA that does not have off-target hits to unrelated tran-
scripts.

Although most existing web servers for designing siRNA
incorporate BLAST [30] to avoid off-target effects [31-38],
several sites including WI siRNA Selection Server [34],
siDRM [39], DSIR [40] and Dharmacon siDESIGN Center
consider seed-dependent off-target effects. Current ver-
sion of WI siRNA Selection Server and siDRM enumerates
the transcripts with full homology to the seed region, and
DSIR and Dharmacon siDESIGN Center calculate seed fre-
quencies for each siRNA candidate. Therefore, we ana-
lyzed the relationship between the calculated Tm and the
distribution of each seed sequence in human 3' UTRs. Cal-

The proportion of selectable siRNAs and mRNAs according to Tm values in the seed-target duplexesFigure 3
The proportion of selectable siRNAs and mRNAs according to Tm values in the seed-target duplexes. (A) The 
percentage of selectable siRNA candidates for human mRNAs according to the Tm values in the seed-target duplexes. The 
total number of siRNA (56,375,087) is set to 100%. (B) The percentage of human mRNAs harboring at least one target 
sequence of an siRNA whose Tm value of the seed-target duplex is below the indicated value. 100% indicates 25,651 mRNAs. 
Off-target hits with 0-4 mismatches between nucleotides at positions in the 2-20 of both siRNA strands and human mRNAs 
were represented as separate lines.
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culated Tm of the seed-target duplexes of all possible 7-nt
seed sequences (47 = 16,384) ranged from -12°C to 60°C,
and of these, 4488 (27.4%) 7-mers had the Tm below
21.5°C (Figure 4A). The number of 3' UTRs bearing at
least one target site of any 7-nt sequence was broadly dis-
tributed from 17 to 10,882 (Figure 4B), excluding the
sequence AAAAAAA, which is found in almost all 3' UTRs
with poly(A) tails. When the siRNAs were classified into
eight groups according to their Tm of the seed-target
duplex, as shown in Figure 4C, siRNAs whose seed-target
duplexes had higher Tm, ranging from 20°C to 60°C,
were less frequent and similarly distributed. On the other
hand, the seed sequences with lower Tm were frequently
found in human 3' UTRs (Figure 4C).

Conclusion
We have extensively updated siDirect 2.0 based on our
experimental knowledge, and provided a promising web-
site for reducing siRNA off-target silencing. The website
selects: 1) functional siRNAs that satisfy our guideline [7],
2) siRNAs with reduced seed-dependent off-target effects
by considering the thermodynamic stability of the seed-
target duplex, 3) siRNAs that do not hit any non-targeted
genes with near-perfect matches. When the candidate
functional siRNAs could form seed-target duplexes with
Tm values below 21.5°C, and their 19-nt region spanning
positions 2-20 of both strands have at least two mis-
matches to any other non-targeted transcripts, siDirect 2.0
can design at least one qualified siRNA for >94% of
human mRNA sequences in RefSeq. This website should
provide a wide scope of applications in RNAi studies.

Calculated Tm values and appearances of 7-nt seed sequencesFigure 4
Calculated Tm values and appearances of 7-nt seed sequences. (A) Calculated Tm values of the duplex formed by all 
possible 7-nt sequences. The dotted line indicates that the number of 7-nt sequences with duplex Tm below 21.5°C is 4,488 
(27.4%). (B) Appearance of 7-nt seed sequences in human 3' UTRs. The numbers of 3' UTR sequences containing at least one 
given 7-nt sequence are shown. (C) Relationship between the appearance of each 7-nt sequence in the 3' UTRs containing at 
least one 7-nt sequence and its calculated Tm. Histograms in the right panel show the appearance of each 7-nt sequence in 
human 3' UTR, divided into 10°C Tm intervals. The seed sequence whose duplex has lower Tm (colored blue) is more fre-
quently observed in the 3' UTRs as compared to those with higher Tm (colored orange).
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